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ABSTRACT

Regions of interest (ROIs) that are pointed to by overlaid markers (arrows, asterisks, etc.) in biomedical images
are expected to contain more important and relevant information than other regions for biomedical article
indexing and retrieval. We have developed several algorithms that localize and extract the ROIs by recognizing
markers on images. Cropped ROIs then need to be annotated with contents describing them best. In most cases
accurate textual descriptions of the ROIs can be found from figure captions, and these need to be combined
with image ROIs for annotation. The annotated ROIs can then be used to, for example, train classifiers that
separate ROIs into known categories (medical concepts), or to build visual ontologies, for indexing and retrieval
of biomedical articles.

We propose an algorithm that pairs visual and textual ROIs that are extracted from images and figure
captions, respectively. This algorithm based on dynamic time warping (DTW) clusters recognized pointers into
groups, each of which contains pointers with identical visual properties (shape, size, color, etc.). Then a rule-
based matching algorithm finds the best matching group for each textual ROI mention. Our method yields a
precision and recall of 96% and 79%, respectively, when ground truth textual ROI data is used.

Keywords: Biomedical image analysis, biomedical article retrieval, content-based image retrieval, image overlay
recognition, figure caption analysis

1. INTRODUCTION

Conventional approaches for biomedical journal article retrieval have been text-based with little attention devoted
to the use of images in the articles. Text-based retrieval can fairly retrieve relevant articles using only text
data such as citations, figure captions, and/or discussion; however, text information is sometimes insufficient
in determining the usefulness of a publication for clinical decision support (CDS) or education, while images
often convey essential information for the decision. For this reason content-based image retrieval (CBIR)-based
approaches have been getting significant research attention. CBIR technology, however, is yet to be adopted into
widespread use, either commercially or within research or academic institutions, mainly due to the “semantic
gap” (the gap between low-level visual features and high-level human interpretations of image semantics) [1].

Recently we have focused on hybrid (text and image) approaches and use of specific local image regions
for CBIR instead of entire images. Authors frequently highlight specific image regions of interest (ROIs) by
overlaid markers (pointers, letters, etc.) and mention the presence of the markers and medical concepts within
the ROIs in figure captions and/or discussion text. We expect that these ROIs contain more important and
relevant information than other regions in images for indexing and retrieval of biomedical images and articles.
Figure 1 shows an image that has an arrow pointing to a 10-mm nodular area of ground-glass attenuation in
a CT (Computed Tomography) scan [2]. One may expect that the local image region that is brighter than its
neighborhood may be the most important region within the image.

We have developed several essential algorithms toward implementing the multimodal retrieval approach such
as pointer recognition and ROI localization [3–5]. In this article we present another essential algorithm that
combines image ROIs with their textual mention. In the example in Figure 1, our pointer recognition and ROI
localization algorithms identified the arrow and ROI (red rectangle); however, the extracted ROI is not annotated
yet with appropriate content that describes it and which could be extracted from the figure caption (i.e., a 10-mm
nodular area of ground-glass attenuation). The algorithm that extracts textual information about the visual ROI
such as type of pointer (arrow) and description (a 10-mm nodular area of ground-glass attenuation) from the
figure caption is a separate process based on text processing techniques [6]. Our proposed method pairs visual



ROIs and textual ROIs (obtained separately) to annotate cropped ROIs with extracted text descriptions. By
visual and textual pointers or ROIs, we denote pointers and local image regions or textual mentions (pointer type,
size, color, etc.) that are identified by our algorithms that are based on image processing and text processing,
respectively.

The remainder of this article is organized as follows. Section 2 provides a summary of our previous image
processing-based algorithms and section 3 describes our pairing algorithm. Evaluation results and discussion
appear in section 4, and conclusions and future work are given in section 5.

Figure caption: Transaxial
thin-section (1-mm collimation)
CT scan (lung window) obtained
at the level of the apical seg-
mental bronchus of the right up-
per lobe shows a 10-mm nodular
area of ground-glass attenuation
(arrow).

Figure 1. A CT scan image with an arrow pointing to the ROI

2. RELATED WORK

In our earlier publications on multimodal (text and image) biomedical retrieval systems [3–5], we discussed i)
overlaid pointer detection and recognition, ii) local image regions of interest (ROIs) extraction, iii) a multimodal
retrieval approach that utilizes visual features from ROIs, iv) textual feature extraction, and v) our continuing
efforts to improve our initial algorithms. Our initial use of ROIs and visual features (e.g., color, texture, etc.)
extracted from ROIs has been limited to re-ranking retrieval results obtained by conventional text- or CBIR-based
retrieval approaches [5].

Recently we reported our work on the integration of textual and visual information extracted from ROIs
pointed to by markers from biomedical articles. In [7] we introduced a visual ontology for biomedical image
retrieval that defines a set of visual entities and the relationships among them, and that maps their appearance to
textual concepts. Textual concepts and corresponding local image regions (ROIs) were automatically extracted
and paired to create a visual ontology. A classification method that automatically labels image regions with
appropriate concepts based solely on their appearance was developed to demonstrate the usefulness of our
approach. Currently our research focuses on chest CT scan images with several frequently found concepts
(disease/pathology) such as ground-glass opacity, honeycombing, and tree-in-bud pattern. We are now expanding
our research to more image modalities and concepts.

3. METHOD

In this section we describe our algorithm that pairs visual pointers with textual mentions extracted from figure
captions. Pointer extraction results from both image and captions are separately obtained in advance, and then
combined by the proposed algorithm. Further details on pointer recognition and textual information extraction
are discussed in [4, 7]. Figure 2 illustrates the structure of the proposed method.



Figure 2. Our proposed pairing method

Figure caption: Hyper-
eosinophilic syndrome in a
59-year-woman. Transverse
thin-section CT scan (1-mm col-
limation) through the right lower
lung demonstrates bronchial
wall thickening (small straight
arrows), interlobular septal
thickening (large straight ar-
rows), faint centrilobular nodules
(curved arrows), patchy areas
with ground-glass attenuation,
and thickening of the interlobar
fissure (arrowheads).

Figure 3. An example with four different groups of pointers (image appears in [8])

3.1 DTW Similarity computation

The first step in our method is to compute similarity scores in order to group recognized pointers into several
groups in which pointers have identical properties. Figure 3 is a sample image that shows the necessity of
pointer grouping before matching with textual pointers. The pointer recognition algorithm successfully detected
13 pointers (out of 14) and the figure caption mentions them as four different types of pointers, viz., small straight
arrows, large straight arrows, curved arrows, and arrowheads. In simple cases, for example an image with only
one black arrow, one white arrowhead, and one curved arrow, pointers may be easily paired with corresponding
textual mentions by simply comparing pointer properties such as type and/or color. In the example shown in
Figure 3, however, such a simple method may not provide satisfactory results. The image has three different
types of pointers (straight arrow, arrowhead, and curved arrow) and arrows come in two different sizes (small and
large). The arrowheads and curved arrows can be linked with corresponding textual concepts directly; however,
straight arrows should be compared with each other to separate “small” from “large”. Another important reason
for pointer grouping is for noise filtering. Pointer recognition results may have some noisy pointers and they
should not be paired with textual pointers. For example, in case the pointer recognition detects several noisy
white arrowheads from the image in Figure 3, pairing without grouping may assign the text description (interlobar
fissure) to the noisy arrowheads as well, which may result in irrelevant retrieval results. Grouping pointers could
separate true pointers from noisy pointers (noisy pointers may be grouped into one or more groups as well).
Even though grouping is performed, we still may need to find a true arrowhead group among the noisy groups;
however, the chance of obtaining correct results can be increased by the grouping.

We apply dynamic time warping (DTW) [3] to obtain similarity scores between two different sequences of
pointer boundary points. Since DTW finds an optimal alignment between two time-dependent sequences, it is
necessary to rotate pointers so that they point in the same direction (e.g., upright) to obtain correct similarity
matching scores. Figure 4 illustrates a rotated arrow and an arrowhead and the order of matching sequence (by
dotted lines with arrow end). The (x,y) coordinates of the rotated contour points (solid lines) are consisting of
the input sequences of the DTW matching.



Figure 4. Illustration of rotated pointer boundary, start point, and sequence order for DTW matching

Two similarity scores are computed for each recognized pointer. One is a self-similarity score that measures
the similarity between a pointer and its instant model pointer. An instant model pointer is one that is instantly
created from the recognized pointer based on its pointer type and labels of line segments defined in [4]. In our
algorithm only straight arrows and arrowheads are compared with their instant models since curved arrows have
various tail shapes and hence it is difficult to create their instant models. Straight arrows and arrowheads have
shape variation as well; however, these are minor and may be ignored. Figure 5 shows several sample instant
models. Straight arrows have only one model shape and arrowheads have two different model shapes that differ
only in the bottom part, as shown in the model in Figure 5(b). The length of the head and tail in straight arrow
models are determined by the line segments that are labeled by the corresponding head or tail segment labels [4].
The DTW similarity score is obtained between a pointer and its instant model and is used as a self-similarity
score. This score can be used not only for pointer grouping but also for noise removal. Pointers with larger
similarity score (e.g., >0.2) can be eliminated as noise.

(a) Straight arrows

(b) Arrowheads

Figure 5. Instant model pointers (left: input, middle: rotated recognized pointer, right: instant model)

Another measure called the co-similarity score is useful for grouping pointers. Authors tend to use one or
several identical pointers to highlight one or several ROIs in an image, but they can be annotated with a single
medical concept. As shown in Figure 3, for example, all four large straight arrows are pointing to four different
local regions, but they all indicate ROIs of one identical concept (interlobular septal thickening). Hence similarity
in appearance may be the most useful feature in pointer grouping. Pointers with identical shape (pointer type
and size) can then be distinguished by color (e.g., white or black), which occurs frequently. Co-similarity is
measured by comparing two rotated pointer boundaries directly by DTW, and the distance measure is then



normalized by a product of their boundary length. Any two pointers with identical shape and size have a smaller
similarity score, while two pointers of different size or shape are expected to have a larger score.

Besides the two similarity scores, each pointer is scored by its own visual features such as color and boundary
length as well. In most cases pointers are monochrome and hence pointers whose color is closer to pure black
or white (gray intensity 0 or 255) are more likely to be true pointers. Pointer boundary length is another good
feature for noise removal. The score is proportional to the boundary length.

3.2 Pointer grouping

Pointers are grouped by a rule-based method based on the two similarity scores. In our method self-similarity is
mainly used for noise removal before the grouping step. The Co-similarity score is used to determine whether a
pointer can be added to a group or not. Figure 6 shows the pseudo code for our grouping algorithm.

In Figure 6 pointers i and j are two different recognized pointers. self sim(i) and co sim(i,j ) denote self-
and co-similarity of pointer i and pointer pair (i,j ), respectively. p list is a list where each entry has pointers
(i,j ) and g list is a group list where each entry g list [ ] has at least two or more pointers that are assumed to be
identical. g list [ ].min co sim is the minimum co-similarity among all member pointers in the group and T1 and
T2 are thresholds. diff and min return the difference and minimum between the two input values, respectively.

Several group properties are computed as well from pointers in each group. They include averages of boundary
length, tail width, pointer height, self-similarity, and co-similarity. Properties such as length, height and width
are useful features that can be used to distinguish pointers and groups with size-related properties such as
thin/thick, large/small, and long/short.

3.3 Pairing textual and visual pointers and ROIs

The purpose of our pairing algorithm is to find a visual pointer group identical or close to a textual pointer
mention. The reality, however, is that noisy and/or missing pointers exist in both visual and textual pointers.
Such errors can occur due to, for example, failure of our extraction algorithms or mistakes made in the publication.

Our approach is to search pointer groups and compute the matching score between a textual ROI and each
group to find the best matching visual pointer group with the textual ROI. Figure 7 shows an example of a textual
ROI. Each textual ROI has six fields, viz., “marker”, “description”, “shape”, “color”, “size”, and “plural”. The
“marker”, “shape”, “color”, and “size” together describe pointer appearance. For example, large black straight
arrow has “size”, “color”, “shape”, and “marker” properties, respectively. The “description” generally contains
medical concepts seen in the ROIs (an example shown in Figure 7). The “plural” denotes whether multiple
pointers in the image refer to the same textual description.

Visual pointers with specific properties such as size are considered first. For example, Figure 3 shows two
groups of straight arrows, i.e., “large” and “small”. Recognition results basically provide the contour length
of each pointer, and additional size-related properties are computed as mentioned in section 3.2; however, they
are not sufficient to distinguish large and small straight arrows. Size is a relative characteristic and all straight
arrow pointer groups need to be compared to find pointers that are larger than others. In the grouping results
for the sample image in Figure 3, there may exist only two straight arrow groups, which is an ideal and easier
case, or more than two, where we need to consider more visual features to choose two true pointer groups. For
textual pointers with the size field set, we first compute matching scores with each of the pointer groups and
find the top two groups with the highest scores. Then we compare the size-related characteristics between the
two and choose the proper one for the textual pointer (e.g., larger of the two for large straight arrows). When
one straight arrow group is found, we may not be able to pair the group with the correct textual pointer since
no clue is available for choosing large arrows against small arrows.

Textual pointers without relative pointer characteristics are then paired with the remaining pointer groups
that are not paired. Such cases are much simpler, and scoring them by comparing their pointer type, color,
and plural properties is sufficient to choose the best matching visual pointer group. Additional features such
as average contour length and self- and co-similarity scores may contribute to improve the scores to find true
pointer groups.



1. // pointer pair entry generation
for each pointer i {

for each pointer j {
if self sim(i) > 0.2 OR co sim(i, j ) > 0.3

continue;
entry score(k) = self sim(i)+co sim(i,j );
Add (i,j ) to pointer list p list[k ];
k++;

}
}

2. Sort the entry list from minimum to maximum by entry score;

3. Add p list[0] to group list g list[0];

4. // pointer grouping
for each entry in p list starting from index 1 {

if g list[m] contains pointer i (or pointer j ) {
if diff(co sim(i,j ), g list[m].min co sim) < T1 {

add pointer j (or i) to g list[m];
g list[m].min co sim = min(co sim(i,j ), g list[m].min co sim);

}
continue;

}

if g list[m] contains both pointer i and j
continue;

if both pointer i and j are not found in g list[ ] {
create a new pointer group g list[g num] and add pointer i and j to g list[g num];
g num++;
continue;

}

if both pointer i and j are found in g list[ ] but from two different groups {
if diff(co sim(i,j ), min(g list[k1].min co sim, g list[k2].min co sim)) < T2

merge two groups;
else

continue;
}

}

Figure 6. Pointer grouping algorithm

[ROI{marker=‘arrow’, description=‘mild dilatation of bronchi’, shape=‘’, color=‘’, size=‘’, plural=true}]

Figure 7. An example of textual ROI representation

Curved arrows and asterisk symbols cannot be paired by the aforementioned method since self- and co-
similarity are not available for them. Instead, basic visual properties such as type, color, and contour length



are used to group them. It is our observation that curved arrows and asterisk symbols are rarely used with
size-related properties. Hence a method similar to the matching method used for pointers without relative
characteristics is sufficient for finding a best matching textual ROI for them.

4. EVALUATION

4.1 Dataset and evaluation method

Our dataset contains 298 chest CT images found in ImageCLEF2010 [9] and used in [7]. All these images contain
one or more pointers and a ground truth set containing visual and textual extraction results for each pointer
was created in a semi-automatic way. Two ground truth files, one for visual ROIs and the other for textual
ROIs, were created separately by our pointer recognition and text processing algorithms, respectivley. To create
the visual ROI ground truth, we first automatically recognized pointers in the images by our pointer recognizer,
and then manually examined the result to eliminate noisy pointers, add missing pointers, and amend incorrect
recognition results. Then the visual ROI ground truth was combined with the textual ROI ground truth. Table
1 shows the number of each pointer type in our dataset. As shown in the table, about 96% of the pointers are
straight arrows and arrowheads.

Table 1. Pointers in the dataset

Straight arrow Curved arrow Arrowhead Asterisk
Number 693 23 316 17

Total 1,049

Two different textual ROI data, viz., Actual and Ground truth, were used in this evaluation. Actual data
contains errors such as missing pointers or incorrect pointer properties. For example, every image has at least
one pointer; however, 50 images in Actual data have no extracted textual ROIs. The plural field (see Figure 7) is
frequently incorrect in Actual data as well. More details of text processing methods, results, and error analysis
are discussed in [7].

A result image as shown in Figure 8 was created for every input image. Only pointers that are correctly
coupled with textual ROIs are counted as success. We do not consider the description field in our evaluation
because it is not needed for pairing pointers in an image with their textual mentions. The effectiveness of our
textual extraction methods is addressed in our previous work [7] and is beyond the scope of this article.

4.2 Evaluation result

Table 2 and 3 show our evaluation results. Table 2 gives pointer recognition result that is obtained solely by
our pointer recognition algorithm. Table 3, on the other hand, shows recognition results after textual ROIs are
included. For each use of textual data, two evaluation methods are used to evaluate our pairing method. The
Individual method counts pointers that are successfully recognized by combined visual-textual result; however,
text ROI linked to the pointers are not examined and hence several of them may not be paired with correct
textual ROIs. The Paired method includes those successfully recognized by visual-only recognition and paired
by correct textual mentions through the pairing algorithm. Figure 8 is a good example to explain the difference.
In the example three pointers, two arrows and one arrowhead, are recognized by visual-only recognition and
four ROIs are extracted from figure caption (hence 3 are Detected). After textual ROI data combined with the
visual detection through the pairing algorithm, all three pointers remain in the final result since both “arrow”
and “arrowhead” are mentioned in the figure caption (and hence included in the textual ROIs). Hence Individual
yields 3 in this example. However, there is an error in the pairing result. ROI 0 in the text result indicates that
it is pointed to by a “short arrow” which is not recognized, and the “open arrow” is coupled with ROI 0 (see
the pairing result overlaid on the image). Hence only two, the ROI 1 and ROI 2 pointed to by “long arrow”
and “arrowhead”, are correctly paired pointers and they are counted in the Paired method.

By comparing the numbers of detected pointers in Table 2 and 3, we notice some noise removal effect
achieved by combining textual data with the visual-only recognition results. When a fairly accurate textual



Table 2. Visual-only pointer recognition result

Ground truth Total detected Detected true Precision (%) Recall (%)
Number of pointers 1,049 1,017 856 84.2 81.6

Table 3. Visual and textual ROIs pairing algorithm evaluation result

Textual data Evaluation method
Number of pointers (concepts) Precision Recall

Ground truth Detected Detected true (%) (%)

Actual
Individual

1,049
693

668 96.4 63.7
Paired 636 91.8 60.6

Ground truth
Individual

856
830 97.0 79.1

Paired 825 96.4 78.6

Figure 8. An example of pairing result. The short arrow for ROI 0 (in the dotted circle) is not recognized and the open
arrow for ROI 3 is matched incorrectly to ROI 0. (original image appears in [10])

result is included, recognition precision is improved with some decrease in recall (see numbers in Individual).
The performance variation is dependent on the accuracy of the combined textual data. As shown in Table 3,
perfect textual results (Ground truth) increase the precision about 13% while recall is similar to the initial result
with a slight decrease (81.6% to 79.1%). On the other hand, real textual data (Actual) achieves higher precision
as well; however, it significantly decreases the recall compared to the visual-only recognition (81.6% to 63.7%).

These changes in precision and recall can be explained as follows. Assume that pointer recognition detects
several straight arrows and arrowheads. Textual processing, however, extracts only “straight arrows” from the
figure caption. In cases textual result is correct, those recognized arrowheads are noisy pointers and eliminating
them increases the precision. Opposite cases, however, are the main cause of reduced recall in the combined
recognition results. True arrowheads that are recognized from the image but not detected from the caption
are eliminated, and this results in a decrease in recall. Undetected pointers in textual ROI result also may
affect annotation process that utilizes the ROIs. In such cases it may be impossible to automatically annotate
successfully extracted image ROIs with accurate descriptions that are most probably extracted from figure
captions.

Figure 9 shows another error case due to undetected visual pointers. In the result ROI 2, which is indicated
by a “thin arrow” shown in the dotted white circle, is coupled with the “thick arrow” in the text result since the
“thin arrow” is not recognized. In such cases identifying size-related properties (e.g., thick/thin, long/short, etc.)



is impossible and hence the detected “thick arrow” may or may not be successfully paired with its corresponding
textual result. Undetected pointers are responsible for all the missing five pointers in the result using Ground
truth (in the Detected true column, 830 vs. 825).

Figure 9. An error case due to an undetected pointer (original image appears in [11])

(a) An example of
pointer type discrep-
ancy

(b) Open arrow

Figure 10. Sample pointers causing pairing errors

Several pointer types were successfully recognized by visual-only recognition but not paired with correspond-
ing textual ROIs. In ideal cases all successfully recognized pointers are expected to be coupled with textual ROI
when the ground truth text ROI is used and the pointers are mentioned in the text. Besides the undetected
pointer factor above, we identified two causes for this error: i) pointer type discrepancy between ground truth
and extraction result, and ii) “open arrow” which is excluded in the pairing algorithm. Figure 10 shows sample
pointers of the error cases. The arrow shown in Figure 10(a) is classified as a “straight arrow” in our ground
truth. However, it is mentioned as a “curved arrow” in the figure caption. Authors frequently use the two names,
i.e., “arrow” (sometimes with “straight”) and “curved arrow”, for the pointer and it is difficult to match one
of the two text names to the visual arrow. Figure 10(b) shows an open arrow that is currently excluded in our
pairing algorithm. Unlike general (solid) arrows (e.g., Figure 10(a)), open arrows have a solid (and thick) pointer
contour, but the body region is not filled. In the example in Figure 10(b), our pointer recognizer successfully
detected the boundary and recognized it as an arrow (with correct ROI location shown by a rectangle). In
general, distinguishing open arrows from general (solid) arrows is a difficult problem.

Our pairing algorithm achieves high precision (the noise removal effect) in ROI extraction, which would lead
to high precision in retrieval. As discussed above precision of image ROI extraction is significantly improved
when textual ROI data is combined, either actual or ground truth. Also it achieves high precision in combining
visual and textual ROIs. About 96% of successfully detected pointers are paired with correct textual mention.
This is a promising result toward achieving high accuracy in annotating the ROIs and images containing them



with accurate text descriptions.

To enhance the performance of our initial pairing method, improvements from both pointer recognition and
text processing need to be achieved. Our current system can achieve the highest recall of 81.6% in a case that all
detected true pointers by visual-only recognition are paired with correct textual ROIs, which is almost impossible
to achieve. Achieving high accuracy in textual ROI extraction and developing robust solutions to the identified
error cases in the pairing algorithm need to be considered first. Improving recall rate of visual-only recognition,
which would be rather difficult than the first two, would be the next task.

5. CONCLUSION

Local image regions in biomedical images may have more meaningful information and may be more relevant
than other regions in an image for biomedical image and article retrieval. Authors frequently use pointers and
symbols to highlight specific local regions and mention them in figure captions and text discussions. Detecting
those pointers can help extract specific local regions of interest (ROIs), and using these ROIs could improve the
relevance of conventional retrieval approaches by combining textual and image features from local regions.

Our prior efforts in ROI processing have been focused mainly on pointer recognition and ROI segmentation,
which are purely image processing-based tasks. In this article we report our initial effort on combining visual
and textual ROIs extracted from images and text data such as figure captions, respectively. Pairing visual ROIs
with the corresponding textual mentions is the first step toward automatic indexing of the ROIs and images
containing them. The tagged ROIs can then be used for image retrieval or building a visual ontology.

In this article we propose a DTW-based visual and textual ROI pairing algorithm. Our pairing algorithm
combines visual pointers with textual mentions by grouping recognized pointers by their visual characteristics
first, and then searching for the best-matching pointer group with a text mention. It successfully pairs over
96% of recognized true pointers with their textual mention when ground truth text data is used. To improve
performance, both visual and textual pointer extraction need to be improved simultaneously. Improving the text
ROI extraction algorithm, however, could be more powerful to improve the initial result. A successfully detected
text ROI in an image could result in one or several pointers being successfully paired with their textual mentions.
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